- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
CUMMINGS, JAMES (1)
-
Cummings, James (1)
-
HAYUT, YAIR (1)
-
Hayut, Yair (1)
-
MAGIDOR, MENACHEM (1)
-
Magidor, Menachem (1)
-
NEEMAN, ITAY (1)
-
Neeman, Itay (1)
-
SINAPOVA, DIMA (1)
-
Sinapova, Dima (1)
-
UNGER, SPENCER (1)
-
Unger, Spencer (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We present an alternative proof that from large cardinals, we can force the tree property at $$\kappa ^+$$ and $$\kappa ^{++}$$ simultaneously for a singular strong limit cardinal $$\kappa $$ . The advantage of our method is that the proof of the tree property at the double successor is simpler than in the existing literature. This new approach also works to establish the result for $$\kappa =\aleph _{\omega ^2}$$ .more » « less
-
Cummings, James; Hayut, Yair; Magidor, Menachem; Neeman, Itay; Sinapova, Dima; Unger, Spencer (, Transactions of the American Mathematical Society)
An official website of the United States government
